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Abstract. Most anomaly detection models are developed by using expert system methods that mimic 
human experts. The process to capture the expertise honed by fraud examiners is complicated and 
practically challenging, often resulting in suboptimal models. This study proposes a clustering-based 
model that captures hidden characteristics of potentially fraudulent wire transfers with less human 
intervention and expertise. Clustering methods classify and group observations with similar 
characteristics, excluding anomalies from major clusters. The choice of a clustering method and its 
parameters is often subjective and significantly affects a set of resulting clusters. In order to reduce 
the subjectivity of a clustering method while retaining its strength, this study proposes a clustering 
model with Density Based Spatial Clustering of Applications with Noise (DBSCAN) to detect 
potentially fraudulent wire transfers of an insurance company. The results show that the DBSCAN 
models identifies hidden relationships between the variables not only included but also excluded for 
the modeling with noise wire transfers while less human intervention is needed for clustering 
parameter selections.  

Keywords: Anomaly detection, fraud detection, clustering, DBSCN, density based clustering,  spatial 
clustering.  

 

1. INTRODUCTION 

According to the Association of Certified Fraud Examiners (ACFE 2022), 
organizations lost approximately five percent of their revenues due to fraud. Nearly 
half of those cases occurred due to lack of internal controls (29%) or override of 
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existing controls (20%). This indicates that appropriate internal controls and 
monitoring are crucial to deterring potential fraud. The ACFE also reported that a 
significant amount of fraud cases was detected by internal and external audits (16% 
and 4%, respectively) and automated transaction/data monitoring (4%), underlining 
their importance to fraud prevention. 

Internal controls, monitoring, and audits are not only essential to curbing fraud. 
When a fraud detection model flags a transaction being suspicious for further 
examination, it may be fraudulent, erroneous, or legitimate. In this study, the term 
“anomaly” will be used to refer to any flagged transaction that is not legitimate. The 
purpose of monitoring and detection models in this study is to correctly identify 
both erroneous and fraudulent instances out of a population of transactions.  

Developing an anomaly monitoring and detection model has many obstacles to 
overcome. Compared with the whole population of a given dataset, the number of 
anomalous (either fraudulent or erroneous) transactions is often extremely small. 
This imbalance makes anomaly monitoring and detection a challenging task – often 
compared to “finding a needle in a haystack.” Another major obstacle to developing 
an anomaly monitoring and detection model is the false positive problem; anomaly 
detection models often flag too many transactions as being suspicious. For example, 
if one percent of a firm’s daily transactions are flagged as suspicious, it would be 
too many for an internal audit team to practically examine due to limited human 
resources. In order to better distinguish anomalous transactions, both supervised 
and unsupervised methods have been used in anomaly detection literature (Bolton 
& Hand, 2001, 2002).  

Supervised methods require a labeled dataset, where each transaction is classified 
as either fraudulent or legitimate. This enables researchers to obtain prior 
knowledge about fraudulent transactions. However, this may not be a desirable 
situation in practice because the existence of sufficient labeled data implies that the 
company suffered from too many anomalies, suggesting that it might be too late to 
develop and apply an anomaly monitoring and detection model. In other words, for 
most companies, development of an anomaly monitoring and detection model is 
likely to start when they notice a few fraud cases that may not be sufficient to apply 
a supervised method (Major & Riedinger, 2002). Practically speaking, an anomaly 
detection model has to be developed without prior knowledge of frauds due to lack 
of a labeled dataset. 
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Unsupervised methods are practically applicable methods for developing an 
anomaly monitoring and detection model because they do not require a labeled 
dataset (Chandola et al., 2009; Kim & Vasarhelyi, 2012). They receive less 
attention in fraud detection literature because the result of an unsupervised anomaly 
detection model is not a substitute for direct evidence of fraud, and their 
effectiveness and efficiency are often difficult to measure and verify. Some 
examples of unsupervised methods are rule-based models with a suspicion scoring 
system and clustering techniques (Kim & Vasarhelyi, 2012; Kim & Kogan, 2014; 
Freiman et al., 2022).  

Clustering is an unsupervised data mining technique used in fraud detection. 
Clustering methods divide given observations into a preset number of groups, called 
clusters. Observations within a cluster are similar to each other and significantly 
dissimilar from observations in clusters (Thiprungsri & Vasarhelyi, 2011; Sabau, 
2012). Similarity of observations are represented by the distance between them. The 
shorter the distance between two observations is, the more similar their 
characteristics. Distance-based clustering methods, such as K-means, are efficient 
when observations form circular or elliptical distributions, but they are inefficient 
for nonconvex clusters. For example, as shown in Figure 1, K-means clustering fails 
to capture true shapes of existing clusters – inner and outer donuts. These arbitrarily 
shaped clusters, however, can be captured by a density-based clustering method, 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN). In 
auditing, it is highly unlikely that auditors have knowledge about the shapes of 
legitimate and anomalous transactions, so it is reasonable to assume that legitimate 
transactions have either convex or nonconvex shapes. Hence, DBSCAN is a more 
suitable method for auditing in that they can identify legitimate observations groups 
with arbitrary shapes. 

DBSCAN is different from other clustering methods. If an observation does not 
meet the preset criteria for clustering, it does not form a cluster and is labeled 
“noise” (Ester et al., 1996; Khan et al., 2014; Tatusch et al., 2020). These noisy 
observations are a collection of outliers that are dissimilar from the observations 
included in the clusters, which is one of the reasons that DBSCAN is suitable for 
identifying anomalies (Sheridan et al., 2020). 
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Figure 1. Clustering by K-means with and without shape-lines 

In other clustering methods, each observation instead belongs to a cluster and the 
observations included in clusters below a given size threshold are considered 
anomalous. It often requires a subjective judgment to determine an appropriate 
threshold to define which clusters should be considered anomalous.  

DBSCAN does not require prior knowledge about the structure of observations to 
determine the number of clusters to be formed. DBSCAN requires only two 
parameters: eps and minPts, where eps is a radius of a region and minPts is the 
number of observations within a region required to form a cluster. A cluster by 
DBSCAN has an arbitrary shape because it continues to grow as long as the 
minimum number of observations within a region is equal to or greater than minPts. 
Due to this nature, DBSCAN can capture nonconvex clusters (Ester et al., 1996; 
Khan et al., 2014; Tatusch et al., 2020).    

In this study, the DBSCAN method was utilized to develop an anomaly monitoring 
and detection model that effectively discriminates between legitimate and 
suspicious transactions while minimizing false positive flags. The model also 
minimizes human intervention because it does not require prior knowledge about 
fraudulent transactions to form the necessary number of clusters. 

The objective of this study is two-fold. Firstly, this research aims to illustrate the 
effectiveness of DBSCAN in detecting anomalous transactions. Secondly, this 
study contributes by demonstrating how anomaly detection activity using DBSCN 
can unveil hidden associations. This study yields valuable insights into identifying 
days and months with higher vulnerability, key initiators and approvers, specific 
lines of business susceptible, and distinct payees to fraud. 
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The rest of the paper is presented as follows. Prior literature about anomaly 
detection and clustering methods is summarized in Section II. Section III illustrates 
data description, model development, and analyses of the results. Section IV 
concludes with a discussion of future research. 

2. LITERATURE REVIEW  

2.1. Obstacles to Anomaly Detection 

Auditing is a systematic process of objectively obtaining and evaluating evidence 
regarding assertions about economic actions and events. This concept was 
broadened by continuous auditing and monitoring, which emphasized timelier 
assurance and focused on transactional data (Vasarhelyi & Halper, 1991). Despite 
extensive academic work on continuous auditing and monitoring, the majority of 
research has focused on technical and theoretical proposals (Vasarhelyi & Halper, 
1991; Kogan et al., 1999; Woodroof & Searcy, 2001; Rezaee et al., 2002; Murthy, 
2004; Murthy & Groomer, 2004; Kim & Vasarhelyi, 2012). Relatively few papers 
conduct empirical studies on continuous auditing and monitoring due to a lack of 
applicable data (Bolton & Hand 2002; Phua et al., 2005; Kim & Vasarhelyi, 2012). 
Different from traditional auditing studies, empirical research on continuous 
auditing and monitoring requires transactional data, often considered a company’s 
private asset and securely guarded to maintain a competitive position in the market. 
Consequently, companies are unwilling to offer their transactional data for 
continuous auditing and monitoring research (Kim & Vasarhelyi, 2012).  

Other factors that discourage companies from offering their transactional data to 
researchers or the public are potential reputational damage and fraud that may arise 
from misuse of the disclosed information. Disclosure of fraud cases may have an 
adverse impact on a company’s reputation in the market by giving a bad impression 
of having poor internal control systems, which may lead to a decrease in future 
revenues. Also, disclosure of fraud events may give detailed information about a 
company’s operating and internal control systems that can be misused by potential 
fraudsters to penetrate that company’s financial systems. Considering that most 
fraudsters were caught by simple mistakes, disclosure of such fraud cases may not 
be a good strategy for companies to prevent similar fraud in the future (Kim & 
Vasarhelyi, 2012; Kim & Alexander, 2014).  
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The nature of fraud detection is similar to that of continuous auditing in that the aim 
is to detect and correct anomalies in a timely manner. Since an anomaly includes 
both errors and frauds, anomaly detection is conceptually broader than fraud 
detection. Undetected fraud can cause a corporation to lose millions in revenue. As 
previously mentioned, the ACFE estimated that loss due to fraud was roughly five 
percent of an organization’s revenue, though the true value might be higher, given 
the potential for undetected fraud. Although anomaly detection is often compared 
to looking for a needle in a haystack, its effectiveness was evidenced by the ACFE 
report.  

2.2. Supervised and unsupervised methods in anomaly detection 

Supervised anomaly detection methods are the most widely used methods in the 
anomaly detection literature. Under a supervised method, a fraud detection model 
is constructed with fraudulent and legitimate observations. Once a model is 
developed with a training set that is a portion of the classified data, it is tested with 
a test set using the remaining portion of the classified data. The test result is 
analyzed using various measures to gauge its prediction power (Bolton & Hand, 
2002; Kim & Kogan, 2014; Kim & Vasarhelyi, 2012; Kou et al., 2004; Phua et al., 
2005). Crucially, they utilize classified data, assuming that fraud patterns identified 
in a training dataset can determine fraudulency of each observation in a test dataset.  

Despite the popularity of supervised methods in anomaly detection literature, they 
also have evident limitations. Prior knowledge about fraudulent and legitimate 
transactions is often unavailable in practice, and, when available, may include false 
positives and false negatives, which lead to suboptimal or inaccurate models. Even 
if a company examines all of its individual transactions, resulting models may not 
be broadly applicable (Bolton & Hand, 2002). Although an anomaly detection 
model is verified with a test dataset, the most accurate model may over-fit the data, 
decreasing external validity. An overfitted detection model may inefficiently or 
ineffectively detect fraud in future transactions or previously unknown types of 
fraud.  

Unsupervised methods have received far less attention in the literature than 
supervised methods. An anomaly detection model using unsupervised methods 
purports to find transactions that do not exhibit expected behaviors. Although its 
major strength is that they do not require classified data, lack of classified data also 
poses a major weakness in that the model verification process is often challenging 
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due to lack of testable data. To overcome this weakness, various indirect 
verification methods, such as peer group analysis and break point analysis, were 
suggested in prior literature (Chandola et al., 2009; Bolton & Hand, 2002). In this 
study, profiling normal and anomalous transactions and comparing their 
characteristics were used as an indirect verification. 

In practice, it is extremely rare to have sufficient labeled transactions when a 
company attempts to implement an anomaly monitoring and detection model. The 
labeled data is a collection of historical and documented transactions that shows 
that a transaction is either legitimate or fraudulent. Lack of labeled data serves as 
another challenge for the most companies that do not have preexisting anomaly 
detection systems. Consequently, it is imperative that companies are able to develop 
an anomaly detection model without labeled data.  

Unsupervised methods show whether or not flagged transactions are potentially 
anomalous, after which internal auditors investigate for confirmation. In other 
words, they do not provide direct confirmatory evidence of anomalies. Despite the 
limitations of unsupervised methods, they may play a critical role at the initial 
implementation stage of anomaly detection, where the available data lacks labeled 
classification information. In addition, the results of unsupervised methods are 
broader than those of the supervised methods, which can help identify general 
patterns of anomalous transactions (Kim & Vasarhelyi, 2012; Liu & Vasarhelyi, 
2013).  

2.3. Clustering methods 

Clustering techniques are the most widely applied unsupervised methods in 
research. Cluster analysis identifies a series of groups that share similar 
characteristics and identifies unusual observations that possess dissimilar 
characteristics. Anomalous observations can be defined in several ways: Anomalies 
are assumed to be observations that do not belong to any cluster, anomalies are 
observations whose distances are far from the nearest cluster centroid, or anomalies 
are defined as observations that belong to small or sparse clusters (Chandola et al., 
2009; Thiprungsri & Vasarhelyi, 2011). This study adopted the first approach 
because it does not require further procedure to determine thresholds to define 
anomalies, which can facilitate application by practitioners.  
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The observations that do not belong to any clusters in this study are considered 
anomalies because they have distinctively different nature from those included in 
clusters. Anomalous transactions identified by a clustering analysis were labeled 
potentially fraudulent, which would demand further investigation to confirm their 
legitimacy Considering that companies usually process similar transactions in the 
course of their day-to-day operations, it will be reasonable to assume that they share 
similar characteristics. Accordingly, those dissimilar from others are outliers that 
are more prone to errors or fraud unless the company is newly opened and more 
likely to have new types of transactions.  

Finding fraud is, however, often compared to “finding a needle in a haystack” 
because fraud often looks legitimate in appearance. This might be a reason why 
only four percent of occupational fraud cases were detected by automated 
transaction/data monitoring and most fraud cases were detected by nonstatistical 
methods, such as tips (42%) and management review (12%) (ACFE, 2022). Since 
clustering methods purport to separate observations by similarity, it will be 
challenging to detect fraud that is similar in appearance, especially when they 
belong to major groups. Hence, clustering methods are more suitable for flagging 
fraudulent transactions with characteristics that are different from legitimate 
observations. Observations that are flagged by the detection model in this study are 
labeled “potentially anomalous,” which implies that their legitimacy can be 
identified only by further investigation. These flagged transactions are unusual in 
nature because they have dissimilar characteristics from those of major groups. This 
dissimilarity might result from their being erroneous or fraudulent. In this study, 
the DBSCAN results were analyzed by various variables to demonstrate the major 
factors that contributed to these dissimilarities.  

A clustering analysis can be carried out with various clustering methods that have 
different logics for grouping observations with similar characteristics. Each 
clustering method generates different sets of clusters so that it is important to choose 
the best-fitting for the given dataset, which poses a major concern in selecting a 
clustering method. Once a specific clustering method is chosen, the next step is to 
determine parameters, such as the number of clusters. This task is often challenging 
and subjective unless prior knowledge about the given data is readily available. The 
parameter selection plays a critical role in determining the resulting clusters and is 
often time-consuming and laborious.  
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K-means clustering, one of the most well-known clustering techniques, is less 
efficient when observations consist of nonconvex shapes because it produces 
convex (circular or elliptical) clusters. Another disadvantage of K-means clustering 
is that the number of clusters must be predetermined. Considering that 
characteristics of anomalies are often unknown at the initial stage of developing 
fraud detection model, it may not be the best candidate for developing an anomaly 
monitoring and detection model. Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN) can tackle these problems in that it forms arbitrary shaped 
clusters and provides simpler ways to determine necessary parameters.  

2.4. DBSCAN 

DBSCAN is a density-based clustering method, which means it forms clusters 
based on how close observations are to each other. It extends a cluster as long as 
the minimum number of observations (minPts) exists within a given radius (eps). 
This algorithm captures arbitrarily shaped clusters. Unlike other clustering 
methods, observations do not belong to any clusters if they fail to meet the criteria 
to form a cluster (called noise) and they show distinctively different behavioral 
patterns from observations included in clusters (Ester et al., 1996; Khan et al., 2014; 
Tatusch et al., 2020). This conceptual framework is conceptually aligned with the 
definition of an anomaly, which is assumed to behave differently from majority 
groups.  

In applying DBSCAN to anomaly detection, the focus lies on the noise rather than 
the clusters. If an observation belongs to a cluster, it shares similar characteristics 
with at least the minPts number of observations, suggesting that it is unlikely to be 
anomalous. However, those that do not belong to any clusters have fewer than the 
minPts number of neighboring observations and are considered potentially 
anomalous. Failing to form a cluster indicates that their characteristics are 
dissimilar from those included in clusters. This implies that the selection of two 
parameters affects the number of resulting noises that will increase for smaller eps 
and/or larger minPts.  

In this study, one of the simplest, but most widely used, parameter selection 
methods was applied to minimize human intervention. This reduces subjectivity in 
the parameter selection, making DBSCAN more useful to practitioners who may 
not be familiar with using clustering techniques. 
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In this study, insurance payments to clients were explored with DBSCAN analysis 
to develop an anomaly detection model for identifying potentially fraudulent 
transactions. The characteristics of noises and major groups were compared to 
demonstrate that DBSCAN effectively discriminated between potential anomalous 
transactions.  

3. METHODOLOGY 

3.1. Data description 

This study used records of wire payments made by a large U.S. insurance company. 
The dataset provided by the company consisted of 20,000 transactions whose 
effective dates ranged from 1/2/2008 to 12/31/2010 with 27 quantitative and 
categorical variables. Out of the 27 variables, 15 variables were excluded for the 
DBSCAN analyses because they had missing values whose causes were 
undeterminable. For example, a transaction might have no routing number for a 
variety of reasons: because it was omissible when it was sent to a well-known 
payee, because it was an optional field, because it was a left off in error, or because 
it was fraudulent. There were many ways to handle missing values for clustering, 
such as imputation and forming clustering only with observations without missing 
values, but it was unclear how the choice of missing value treatment would affect 
the result and which treatment method would best fit for this study. To simplify the 
DBSCAN process, this study excluded variables with missing values, relegating 
further investigation of missing value treatment to a future study. The 12 variables 
chosen for the clustering analyses in this study were Wire ID, Amount, Initiation 
date, Effective date, Account number of a line of business, Payee ID, month and 
day of initiation, month and day of the effective date, day of initiation date 
(Monday, Tuesday, Wednesday, Thursday, Friday, and non-working days such as 
Saturday, Sunday, and holidays), and day of the effective date.  

A wire transfer was first initiated by an employee of a line of business (“initiator”) 
and approved by one or two employees (“approvers”), depending on its amount. 
Each initiator and approver had their own authorization limits, and a wire transfer 
beyond their authorization limits was forwarded to a senior employee with a higher 
authorization limit, such as a manager. Suspicious wire transfers also required a 
second approver to confirm their legitimacy. Employees only addressed transfers 
for the bank account groups to which they were assigned.  
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3.2. Model development 

In order to verify the effectiveness of the DBSCAN model, the dataset was divided 
into two groups and their results were compared. One group was called the Training 
set which consisted of the first 10,000 wire transfers and the remaining was 
allocated to the other group, the Test set. This division was designed to mimic how 
fraud detection activity worked in real life, where we assumed that fraud detection 
activity would be initiated every 10,000 transactions. 

3.2.1.  Training set   

Clustering requires extraordinary computational power which often leads to 
extreme heat that causes a system failure. In order to mitigate this problem and 
improve performance, unnecessary variables are removed. The 12 numeric 
variables, “dimensions”, of each group were reduced to nine principal components 
(PCs) by a principal component analysis (PCA) often used for dimensionality 
reduction. The optimal number of dimensions was selected by analysis of the 
variances of the PCs (Table 1) and a scree plot (Figure 2). A common strategy when 
using a scree plot is selecting the number of PCs at the line’s “elbow” where the 
percentage of explained variances shows a dramatic drop. 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

Standard 
Deviation 1.8711 1.3591 1.2761 1.1467 1.0611 0.9637 0.9071 0.7615 0.4482 0.2150 0.0605 0.0011 

Proportion 
of Variance 0.2918 0.1539 0.1357 0.1096 0.0938 0.0774 0.0686 0.0483 0.0167 0.0039 0.0003 0.0000 

Cumulative 
Proportion 0.2918 0.4457 0.5814 0.6910 0.7848 0.8622 0.9308 0.9791 0.9958 0.9997 1.0000 1.0000 

Table 1. Analysis of the Variance of the PCs 

The scree plot in Figure 2 may have two elbows at the dimensions of two and nine. 
Considering their cumulative variance (0.4457 and 0.99584, respectively), the 
significantly more explanatory elbow at nine PCs was chosen. 

A DBSCAN model does not require that the number of clusters be determined in 
advance with ex ante expectations about observations’ behavior patterns. Instead, 
it requires two parameters, eps and minPts, where the eps is a distance from a point 
to k nearest neighbor and the minPts is the number of k nearest neighbors within a 
specific distance (eps). 
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Figure 2. Accumulated variances of principal components 

In a DBSCAN analysis, a dense region is formed if the number of points within an 
eps distance is the value of minPts or more. This process stops when no more dense 
formation is possible. This results in clusters with arbitrary shapes. The selection 
process of these two parameters may cause a subjectivity issue because there are 
many options for their determination. In order to minimize human interventions, 
two methods were utilized in this study: a kNNdistplot in R software and a natural 
log function.  

The kNNdistplot is a commonly used function in determining an appropriate eps 
value. This function plots kNN distances that are distances from a point to its k 
nearest neighbor. When plotted, kNN distances are depicted against the points that 
are sorted by distance. The kNN distance at the “knee” in the plot is considered 
suitable for a DBSCAN model. As shown in Figure 3, the 12-NN distance at the 
knee was around three, so the eps for the DBSCAN model was set to three. 

The other parameter, minPts, is often determined by using a natural log function. 
The minPts is a natural log value of the number of observations (Equation 1). 

In this study, each dataset consisted of 10,000 observations, so minPts was set to 9, 
as it was the nearest integer value for the natural log value of 10,000 (9.21). 

Equation 1. Computation of minPts 

minPts = ln (the number of observations) 
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Figure 3. Training set – kNNdistplot 

The DBSCAN on the Training set with an eps of three and a minPts of nine resulted 
in eight clusters with 46 points of noise (Table 2). Cluster 0 contains all points 
throughout the distribution that failed to form a cluster. As depicted in Figure 4, 
each cluster had arbitrary shapes, which differentiates DBSCAN from other 
clustering methods that form elliptical or circular clusters. The black dots are 
outliers that represent noisy wire transfers with behavioral patterns that are 
dissimilar from those in the eight clusters.     

Cluster 0 1 2 3 4 5 6 7 8 

Number of observations 46 9,751 34 64 9 27 9 9 51 
Table 2. DBSCAN for the training set 

In order to confirm that the characteristics of noise were distinctively dissimilar 
from those of clustered observations, descriptive statistics of the transfer payments 
were compared for variables used and excluded from the clustering. 
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Figure 4. Visualization of the clusters 

The variables used in the clustering were compared to show that the noise transfer 
payments were distinct from normal observations. Comparisons of the variables not 
included in the clustering were performed to examine whether the DBSCAN model 
could capture unknown characteristics of other variables.  

 Included in the model Excluded from the model 

Descriptive statistics 
• Amount • Initiator - Authorization limit 

• Approver – Authorization limit 

Frequency 

tests 

Significant 

• Day of initiation date 

• Day of effective date 

• Month of initiation date 

• Month of effective date 

• Payee ID 

• Initiator ID 

• Initiator LOB 

• Approver ID 

• Approver LOB 

Insignificant 
• Day of month of initiation date 

• Date of month of effective date 

 

Table 3. Variables in comparison 

Variables included in the model 

a. Descriptive statistics 

A fraudulent wire transfer of a larger amount will be more damaging to an 
organization than a smaller transfer. As such, it was expected that noise transactions 
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would have higher amounts than the major transfers (i.e., non-noise wire transfers), 
and they would call for more attention. As expected, descriptive statistics of the 46 
noise transfers showed higher average and median than those of normal transfers 
(Table 4). However, caution must be taken to interpret this result. Alternatively, 
fraudulent transactions may have similar amounts of their legitimate peers if 
fraudsters tried to mimic a pattern of legitimate transfers to avoid being caught. 
Considering that materiality is of major concern to auditors, this study focused on 
the fraudulent transfers with larger amounts (Kim & Kogan, 2014).   

Type _FREQ_ N Nmiss Min Max Range Mean Stdev P25 P50 P75 LCLM UCLM Skew Kurt 

Major 9,954 9,954 - 0.0 10,000,000.0 10,000,000.0 69,630.4 233,585.2 14,135.7 31,817.2 61,643.6 65,041.1 74,219.7 21.0 631.1 

Noise 46 46 - 0.0 150,000,000.0 150,000,000.0 19,845,778.9 41,181,495.1 4,574.7 67,139.0 14,913,862.1 7,616,384.5 32,075,173.4 2.0 2.7 

Table 4. Training set – descriptive statistics:  amount 

b. Frequency test 

Five out of the remaining 11 variables in the model displayed clear behavior 
differences between the major cluster transfers and the noise transfers: Day of 
initiation date, Day of effective date, Month of initiation date, Month of effective 
date, and Payee ID. These differences might not have been captured without 
DBSCAN’s uniquely flexible clustering potential.  

b.1. Variables with significant differences 

The comparison of Day of initiation date showed that noise transfers were initiated 
during non-working days, such as Saturdays, Sundays, and holidays (Column 9 in 
Table 5). In the major clusters, wire transfers during non-working days accounted 
for only 0.36% of the total transfers, while the percentage of noise transfers that 
took place during the same periods was 4.35%. Considering that fraudsters needed 
opportunities to commit fraud, non-working days when no other employees were 
present could create better opportunities than working days. Another notable day 
that drew attention was Fridays (Table 5, column 5). While rare for clustered 
transfer payments (4.37%), 39.13% of noise transactions were initiated on Fridays. 
This might happen because wire transfers initiated on Fridays can take longer to 
verify than those initiated on other working days. As shown in Table 6, the 
percentage of noise wire transfers that took place on working days started 
increasing from Wednesdays, with the largest share initiated on Fridays. 
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  1 2 3 4 5 9 Total 

Major 6,765 1,518 588 612 435 36 9,954 

  67.96% 15.25% 5.91% 6.15% 4.37% 0.36% 100.00% 

Noise 6 4 7 9 18 2 46 

  13.04% 8.70% 15.22% 19.57% 39.13% 4.35% 100.00% 

Total 6,771 1,522 595 621 453 38 10,000 

>10X           > 10X   

Table 5. Training set – frequency test: day of initiation date 

The second variable in comparison was Day of effective date that wire transfers 
were approved and ready for payments. Similar to day of initiation date, Table 6 
shows that a greater percentage of noise transfers went into effect during non-
working days (4.35% vs. 0.18% under Column 9 in Table 6). One explanation is 
that outside fraudsters might ask for an expedited process to avoid regular 
verification procedures during working days. Also, this might happen when insider 
fraudsters tried to minimize a chance of being monitored by another employee 
during working days. Another notable day worthy of attention was Mondays 
(Column 1 in Table 6). Compared to the major transfer payments (4.91%), 32.61% 
of noise transfers went into effect on Mondays. This might happen because wire 
transfers initiated on Fridays were verified and ready for payments on Mondays. As 
observed in Figure 4, there was one day of latency between initiation date and 
effective date, which implies that the insurance company tries to process initiated 
wires by the very next business day. Fraudsters might misuse this business practice 
by initiating fraudulent wire transfers on Fridays that had to be processed on 
Mondays, which were one of the busiest days for the company. It is highly likely 
that the company’s employees had to spare less time on each wire transfer to meet 
the company’s service policy. 

  1 2 3 4 5 9 Total 

Major 489 6,770 1,366 675 636 18 9,954 

  4.91% 68.01% 13.72% 6.78% 6.39% 0.18% 100.00% 

Noise 15 7 4 7 11 2 46 

  32.61% 15.22% 8.70% 15.22% 23.91% 4.35% 100.00% 

Total 504 6,777 1,370 682 647 20 10,000 

>10X           > 10X   

Table 6. Training set – frequency test: day of effective date 
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The third and fourth variables in comparison were initiation month and effective 
month. This was to examine if the noise transactions took place more frequently in 
particular months of the year. The rationale behind this investigation was the 
motivation component of the fraud triangle (Motivation, Opportunity, and 
Rationalization). Motivation relates to a fraudster’s incentive to commit fraud, such 
as financial hardship, or simple greed. Considering that people spend more money 
during holiday seasons, suspicious transfer payments were expected to occur more 
frequently in the months close to year-end. As shown in Table 7 and Table 8, the 
wire transfers in the major clusters were initiated and made effective evenly 
throughout the year, while about 50% of the noise wire transfers were processed in 
November and December. This finding indicates that potentially suspicious wire 
transfers were likely to take place in these two year-end months. 

  1 2 3 4 5 6 7 8 9 10 11 12 Total 

Major 680 803 1,022 770 747 895 815 928 824 748 826 896 9,954 

  6.83% 8.07% 10.27% 7.74% 7.50% 8.99% 8.19% 9.32% 8.28% 7.51% 8.30% 9.00% 100.00% 

Noise 3 4 0 4 1 3 0 3 4 1 14 9 46 

  6.52% 8.70% 0.00% 8.70% 2.17% 6.52% 0.00% 6.52% 8.70% 2.17% 30.43% 19.57% 100.00% 

Total 683 807 1,022 774 748 898 815 931 828 749 840 905 10,000 

>10X                           

>2X                     > 2X > 2X   

Table 7. Training set – frequency test: month of initiation date 

  1 2 3 4 5 6 7 8 9 10 11 12 Total 

Major 771 811 976 820 746 849 860 878 864 757 779 843 9,954 

  7.75% 8.15% 9.81% 8.24% 7.49% 8.53% 8.64% 8.82% 8.68% 7.60% 7.83% 8.47% 100.00% 

Noise 3 4 0 4 1 3 0 2 5 1 14 9 46 

  6.52% 8.70% 0.00% 8.70% 2.17% 6.52% 0.00% 4.35% 10.87% 2.17% 30.43% 19.57% 100.00% 

Total 774 815 976 824 747 852 860 880 869 758 793 852 10,000 

>10X                           

>2X                     > 2X > 2X   

Table 8. Training set – frequency test: month of effective date 

The fifth variable, Payee ID, was used to examine if the noisy wire transfers were 
related to particular payees. As shown in Table 9, most of the noise wire transfers 
were related to new payees that did not have any wire transfers in the major clusters. 
Conversely, payees that received wire transfers more often were less likely to have 
noisy transfers. For example, the payee with the ID of 30432 had 144 wire transfers, 
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all of them were in the major clusters. Similarly, the payee with the ID of 30422 
had 693 wire transfers and only two of them were noise. 

  281 1367 1368 3821 3824 7167 10336 11072 15887 15893 16988 

Major 0 0 0 0 0 0 0 0 0 0 2 

  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 

Noise 1 1 1 1 1 1 1 1 1 1 0 

  2.17% 2.17% 2.17% 2.17% 2.17% 2.17% 2.17% 2.17% 2.17% 2.17% 0.00% 

Total 1 1 1 1 1 1 1 1 1 1 2 

>10X > 10X > 10X > 10X > 10X > 10X > 10X > 10X > 10X > 10X > 10X   

New New New New New New New New New New New   

            
  17996 18737 19011 19874 19932 … 30422 30429 30432 30433 Total 

Major 2 1 1 0 2 … 691 8 144 46 9,954 

  0.02% 0.01% 0.01% 0.00% 0.02% … 6.94% 0.08% 1.45% 0.46% 100.00% 

Noise 0 1 0 2 0 … 2 0 0 1 46 

  0.00% 2.17% 0.00% 4.35% 0.00% … 4.35% 0.00% 0.00% 2.17% 100.00% 

Total 2 2 1 2 2 … 693 8 144 47 10,000 

>10X   > 10X   > 10X   …           

New       New               

Table 9. Training set – frequency test: Payee ID 

b.2. Variables with significant differences 

Not all variables in the DBSCAN analysis showed meaningful differences between 
the major and the noise groups. Day of month of initiation date (Table 10) and Date 
of month of effective date (Table 11) did not show clear behavioral differences 
between the major and noise wire transfers. Although these two variables did not 
produce significant differences, there was one observation that might require further 
investigation. In the result of Day of the month of initiation date, 21 noise wire 
transfers were initiated over the 10th, 11th, and 12th, and they all seemed to be 
effective on the 15th. There were no clear expectations or explanations about this 
phenomenon. Except for this case, the occurrences of the noise wire transfers were 
well distributed over days within months. The remaining four variables, Wire ID, 
Initiation date, Effective date, and Account number of a line of business did not 
show any significant results. 

 



Kim and Vasarhelyi      __                                                                       Anomaly detection with DBSCAN…75 
  1 2 … 10 11 12 13 14 15 16 … 28 29 30 31 Total 

Major 393 529 … 280 296 354 452 485 343 282 … 310 338 232 106 9,954 

  3.95% 5.31% … 2.81% 2.97% 3.56% 4.54% 4.87% 3.45% 2.83% … 3.11% 3.40% 2.33% 1.06% 100.00% 

Noise 1 2 … 4 6 11 0 1 0 0 … 2 2 1 1 46 

  2.17% 4.35% … 8.70% 13.04% 23.91% 0.00% 2.17% 0.00% 0.00% … 4.35% 4.35% 2.17% 2.17% 100.00% 

Total 394 531 … 284 302 365 452 486 343 282 … 312 340 233 107 10,000 

>10X     …               …           

Table 10. Training set – frequency test: day of month of initiation date 

  1 2 3 4 … 14 15 16 17 18 … 28 29 30 31 Total 

Major 226 373 429 427 … 453 521 353 299 300 … 281 339 322 112 9,954 

  2.27% 3.75% 0.043 4.29% … 4.55% 5.23% 3.55% 3.00% 3.01% … 2.82% 3.41% 3.23% 1.13% 100.00% 

Noise 1 1 2 1 … 1 12 0 0 1 … 5 3 2 0 46 

  2.17% 2.17% 0.044 2.17% … 2.17% 26.09% 0.00% 0.00% 2.17% … 10.87% 6.52% 4.35% 0.00% 100.00% 

Total 227 374 431 428 … 454 533 353 299 301 … 286 342 324 112 10,000 

>10X         …           …           

Table 11. Training set – frequency test: day of month of effective date 

Variables excluded from the model 

Clustering methods are used to capture hidden characteristics of observations in a 
model without prior knowledge about them. The primary goal of this study was to 
capture the hidden relationships of the variables included in the model, but analyses 
were also conducted to determine whether DBSCAN can identify patterns in 
variables that were not included in the model. This section details the relationships 
found using DBSCAN on variables not included in the model.  

a. Descriptive Statistics 

Descriptive statistics of Initiator’s Authorization Limit and Approver’s 
Authorization Limit were compared to find any significant differences. As shown 
in Table 12, noisy wire transfers were not significantly different from the clustered 
wire transfers for Initiator - Authorization limit. The only significant difference was 
that the initiators of the noisy wire transfers had higher authorization limits for Max 
and P75. However, considering their magnitudes (1,071,352,074.6 vs. 
1,718,387,206.7 for Max; 1,000,000,000.0 vs. 1,051,599,979.4 for P75), all of 
which were greater than one billion, their comparison did not seem meaningful. 
Furthermore, the initiator’s authorization limit reached one billion at P25 which 
implied that the employees were allowed to initiate all wire transfers as a matter of 
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practical convenience. Only if the amount was absurdly high would it require 
approval.  

Type _FREQ_ N Nmiss Min Max Range Mean Stdev P25 P50 P75 LCLM UCLM Skew Kurt 

Major 9,954 9,867 87 671,050,846 1,071,352,075 400,301,228 970,843,317 96,083,557 1,000,000,000 1,000,000,000 1,000,000,000 968,947,232 972,739,403 -2.8 5.8 

Noise 46 45 1 671,050,846 1,718,387,207 1,047,336,360 1,019,104,188 131,107,824 1,000,000,000 1,000,000,000 1,051,599,979 979,715,038 1,058,493,339 2.7 20.5 

Table 12.  Training set – descriptive statistics:  Initiator’s authorization limit 

In Table 13, differences between the clusters and the noise were found for Approver 
- Authorization limit. The approvers in the noisy wire transfers had significantly 
higher values for Min, Max, Mean, P25, P50, and P75. These findings were related 
to amounts of the noisy wire transfers. As discussed in the descriptive statistics of 
Amount, noisy wire transfers had higher amounts than those of the major wire 
transfers. Obviously, the approvers needed higher authorization limits for approval.  

Type _FREQ_ N Nmiss Min Max Range Mean Stdev P25 P50 P75 LCLM UCLM Skew Kurt 

Major 9,954 9,923 31 373,933 189,310,454 188,936,521 7,497,905 21,715,395 999,999 999,999 999,999 7,070,591 7,925,219 4.7 26.7 

Noise 46 45 1 999,999 851,261,995 850,261,996 98,748,027 183,071,506 5,000,000 5,000,000 170,260,804 43,747,257 153,748,796 3.3 11.7 

Table 13. Training set – descriptive statistics: Approver’s authorization limit 

b. Frequency tests 

This section compares four variables that were excluded from the model, Initiator 
ID, Initiator LOB (Line of Business), Approver ID, and Approver LOB, to test 
whether noisiness was related to specific initiators, approvers, and/or their LOBs. 
Comparisons of Initiator ID (Table 14) showed that specific initiators had 
significantly more noisy wire transfers and some of them were new initiators. For 
example, initiator 554809 was associated with 30.43% of the total noise wire 
transfers and the initiator 1006563 was new to wire transfer initiations. The related 
variable, Initiator LOB, in Table 15 also showed that specific Initiator LOBs were 
related to the noise wire transfers. For example, LOB 10025098 was a new LOB 
that had only noisy wire transfers. Another notable finding was that the number of 
noisy wire transfers was not proportional to the number of all wire transfers initiated 
by either the initiators or the LOBs. For example, initiator 1018694 had 2 noisy 
wire transfers that were 4.35% of the total number of the wire transfers initiated, 
while 19.57% of the wire transfers initiated by the initiator 1012738 were noise. 
Similar results were found in Initiator LOB. These findings may help improve the 
company’s internal control systems by allocating more resources to specific 
initiators and their LOBs or by identifying problematic employees for discipline.  
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  375727 377989 489669 531936 554809 … 996669 1006563 1012675 1012738 1018694 1019485 1020227 … 1044825 1045537 1047624 1050431 1053527 Total 

Major 10 76 1 7 72 … 16 0 0 18 684 50 81 … 5 24 37 5 14 9,954 

  0.10% 0.76% 0.01% 0.07% 0.72% … 0.16% 0.00% 0.00% 0.18% 6.87% 0.50% 0.81% … 0.05% 0.24% 0.37% 0.05% 0.14% 100.00% 

Noise 1 0 0 0 14 … 0 4 1 9 2 0 6 … 0 0 1 0 0 46 

  2.17% 0.00% 0.00% 0.00% 30.43% … 0.00% 8.70% 2.17% 19.57% 4.35% 0.00% 13.04% … 0.00% 0.00% 2.17% 0.00% 0.00% 100.00% 

Total 11 76 1 7 86 … 16 4 1 27 686 50 87 … 5 24 38 5 14 10,000 

>10X > 10X       > 10X …   > 10X > 10X > 10X     > 10X …             

New               New New                       

Table 14. Training set – frequency test:  Initiator ID 
  10023755 10023756 10023761 10023762 10024552 10025098 10025286 10025815 10027036 10032440 10034880 10042280 10049070 10068049 5025814 5025815 85025814 85025815 Total 

Major 7 1 454 526 11 0 79 61 3926 45 13 200 19 4487 72 15 14 24 9954 

  0.07% 0.01% 4.56% 5.28% 0.11% 0 0.79% 0.61% 39.44% 0.45% 0.13% 2.01% 0.19% 0.4508 0.72% 0.15% 0.14% 0.24% 100.00% 

Noise 0 0 19 1 0 4 14 0 2 0 0 1 1 3 1 0 0 0 46 

  0.00% 0.00% 41.30% 2.17% 0.00% 8.70% 30.43% 0.00% 4.35% 0.00% 0.00% 2.17% 2.17% 6.52% 2.17% 0.00% 0.00% 0.00% 100.00% 

Total 7 1 473 527 11 4 93 61 3,928 45 13 201 20 4,490 73 15 14 24 10,000 

>10X      > 10X > 10X      > 10X       

New      New              

Table 15. Training set – frequency test: Initiator LOB 

Comparisons for Approver ID (Table 16) and Approver LOB (Table 17) showed 
that noisy wire transfers were related to specific approvers and approver LOBs. As 
shown in Table 16, the approver 551036 approved 28.26% of the total noise, and 
many approvers, such as approver 952394, that approved noise were new to the 
approval process. The related variable, Approver LOB, also showed that specific 
Approver LOBs were common among noisy wire transfers. For example, LOB 
10025098 was a new LOB that only approved noise. Similar to Initiator ID and 
Approval LOB, the number of noisy wire transfers was not in proportion to the 
number of all wire transfers approved by either the approvers or the LOBs. For 
example, approver 344248 had no noisy wire transfers despite approving 161 wire 
transfers, while 28.26% of the wire transfers approved by approver 551036 were 
noise. Similar results were found in Approver LOB. These findings may be useful 
to improve the company’s internal control over their approval system. 

  343375 344248 370462 489738 551036 554820 645107 … 943419 952394 953256 966385 968226 970535 990091 990637 992955 

Major 31 161 11 8 79 0 57 … 37 0 0 47 96 74 685 0 0 

  0.31% 1.62% 0.11% 0.08% 0.79% 0.00% 0.57% … 0.37% 0.00% 0.00% 0.47% 0.96% 0.74% 6.88% 0.00% 0.00% 

Noise 1 0 0 0 13 1 4 … 0 3 1 6 3 0 3 2 1 

  2.17% 0.00% 0.00% 0.00% 28.26% 2.17% 8.70% … 0.00% 6.52% 2.17% 13.04% 6.52% 0.00% 6.52% 4.35% 2.17% 

Total 32 161 11 8 92 1 61 … 37 3 1 53 99 74 688 2 1 

>10X         > 10X > 10X > 10X …   > 10X > 10X > 10X       > 10X > 10X 

New           New       New New         New New 

                                    

  … 1003195 1009382 1018530 1025214 1026338 1036956 Total                   

Major … 10 10 39 4 8 92 9,954                   

  … 0.10% 0.10% 0.39% 0.04% 0.08% 0.92% 100.00%                   

Noise … 1 0 0 2 0 0 46                   

  … 2.17% 0.00% 0.00% 4.35% 0.00% 0.00% 100.00%                   

Total … 11 10 39 6 8 92 10,000                   

>10X … > 10X     > 10X                         

New                                   

Table 16. Training set – frequency test: Approver ID 
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  10023709 10023755 10023756 10023759 10023761 10023762 10025098 10025286 10027036 10032440 10034880 10042280 10049070 10068041 10068049 10068051 Total 

Major 11 100 8 6 363 697 0 79 3,926 45 11 202 19 108 4,161 218 9,954 

  0.11% 1.00% 0.08% 0.06% 3.65% 7.00% 0.00% 0.79% 39.44% 0.45% 0.11% 2.03% 0.19% 1.08% 41.80% 2.19% 100.00% 

Noise 0 0 0 0 15 4 4 14 2 0 0 1 3 0 3 0 46 

  0.00% 0.00% 0.00% 0.00% 32.61% 8.70% 8.70% 30.43% 4.35% 0.00% 0.00% 2.17% 6.52% 0.00% 6.52% 0.00% 100.00% 

Total 11 100 8 6 378 701 4 93 3,928 45 11 203 22 108 4,164 218 10,000 

>10X             > 10X > 10X         > 10X         

New             New                     

Table 17. Training set – frequency test: Approver LOB 

DBSCAN captured hidden characteristics of both the variables used in the model 
and those excluded from the model. Two of major obstacles to analyzing a large 
dataset in practice are excessive consumption of the computational resources for 
analysis and extensive processing time. In order to remedy this issue, this study 
utilized the PCA that was one of the widely used methods to reduce the 
dimensionality of datasets while retaining the maximal variability intrinsic to the 
original data (Hasan and Abdulazeez, 2021; Jolliffe and Jorge, 2016). When a 
company has new records, they have two options when using DBSCAN. They may 
run the clustering (1) with the whole dataset, including both old and new data, or 
(2) using only new data. The first option will produce more accurate clusters 
because noise this month may become clustered if similar transactions are executed 
next month. Unfortunately, this approach will face a computational resource issue 
sooner or later. Ideally, DBSCAN would be applied to the new data only but its 
results would still be similar to what would be found when running the whole 
dataset. In order to test this possibility, three DBSCAN analyses were conducted in 
the next section. 

3.2.2. Test set  

The analyses of the Test set were conducted with the following procedures. First, 
DBSCAN was applied to the Test set that consisted of the 10,001st to 20,000th wire 
transfers. Second, the Whole set (1st to 20,000th) was clustered with DBSCAN and 
the wire transfers that belonged to the Test set portion were extracted. Third, the 
Whole set was DBSCAN-clustered with the Training set parameters and then the 
Test set portion was extracted. The last method was to reduce the time to determine 
the DBSCAN parameters.  

Table 18 shows the parameters and the numbers of noise transfers for each 
clustering. The same procedures in the Training set clustering were applied for 
consistent comparisons. The parameters selected for the Test set were the same as 
those of the Training set (eps=3 & minPts=9), while those for Whole set resulted in 
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the smaller eps and the larger minPts (eps=2 & minPts=10). As shown in Figure 5, 
the knee of the graph was nearest to 2, and ln (20,000) was 9.903 which was closer 
to 10. 

 
Figure 5. Whole set - kNNdistplot 

With these parameters, each set was DBSCAN-clustered. The same procedures 
were applied to the Training set and the results were summarized in Table 18. The 
Standalone Test set had 34 noise wire transfers, while the number of noise wire 
transfers of the Whole set with eps of two and minPts of 10 was 277, of which 209 
belonged to the Test set portion. With the parameters used for the Training set 
clustering, the Whole set resulted in 57 noise points and 47 of them were members 
of the Test set. The relationship between the three results was visualized with Venn 
diagram in Figure 6. Of the transfers that were flagged as noise, 31 were selected 
by all of the models, and 159 were flagged only by the Whole set with its own 
parameters. This result was not a surprise because the use of the stricter rule (i.e., 
more observations within a smaller area to form a cluster) caused more observations 
not to be clustered. The characteristics captured by the Standalone Test set and the 
Whole set with the Training set parameters were expected to be similar because 
their union accounted for 91.18% (= 31/34) and 65.96% (= 31/47), respectively. 
However, the Whole set with its own parameters might have different results 
because the union was only 14.83% of the total flagged noises (= 31/209).  
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 Parameters Whole set (20,000 Obs) Test set portion 
Test set – Standalone eps=3 & minPts=9 N/A 34 
Whole set – Test set portion eps=2 & minPts=10 277 209 
Whole set with the Training set 
parameters – Test set portion eps=3 & minPts=9 57 47 

Table 18. Parameters and number of noise transfers 

 
Figure 6. Numbers of noise wire transfers 

The results of these three sets were compared in terms of the same set of the 
variables that were used for the Training set analyses for consistent comparisons.  

Variables included in the model 

a. Descriptive statistics 

In all of the three clustering models, the major wire transfers were different from 
the noises in terms of all measures. As shown on Table 19, however, the values of 
the Whole set with its own parameters differed from the other two models. The 
averages and medians of noise transfers of each model showed were higher than 
those of clustered transfers.  

  Type _FREQ_ N Nmiss Min Max Range Mean Stdev P25 P50 P75 LCLM UCLM Skew Kurt 

 Test - 
Standalone  

Major 9,966 9,966 - 2.8 4,093,893,198.0 4,093,893,195.0 48,393,341.5 231,833,327.0 11,525.6 51,037.1 300,138.8 43,841,194.6 52,945,488.4 7.5 73.5 

Noise 34 34 - 1,498.0 12,466,500,000.0 12,466,498,502.0 2,448,894,505.0 3,317,147,378.0 1,036,789.0 70,743,000.0 4,199,375,608.0 1,291,487,069.0 3,606,301,942.0 1.4 1.3 

 Whole set  
Major 9,791 9,791 - 2.8 1,905,155,814.0 1,905,155,811.0 34,811,999.5 155,756,158.0 11,290.6 49,588.5 278,354.5 31,726,443.1 37,897,555.9 5.6 35.2 

Noise 209 209 - 131.6 12,466,500,000.0 12,466,499,868.0 1,075,149,129.0 1,747,219,291.0 76,569.0 17,068,807.0 1,713,905,970.0 836,886,099.0 1,313,412,159.0 2.9 12.1 

 Whole set 
- Train 

parameters  

Major 9,953 9,953 - 2.8 2,923,437,690.0 2,923,437,687.0 45,022,901.2 207,900,535.0 11,500.8 50,906.3 300,138.8 40,938,019.2 49,107,783.2 6.5 50.6 

Noise 47 47 - 1,498.0 12,466,500,000.0 12,466,498,502.0 2,498,670,623.0 2,882,389,988.0 4,196,585.5 1,930,243,724.0 4,000,000,000.0 1,652,369,218.0 3,344,972,028.0 1.4 2.2 

Table 19. Test set – descriptive statistics: Amount 
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b. Frequency tests 

Similar to analyses using the Training set, the five variables included in the model 
were analyzed to capture the distinctive differences between the major and noise 
wire transfers. They were Day of initiation date, Day of effective date, Month of 
initiation date, Month of effective date, and Payee ID.  

b.1. Variables with significant differences 

First, all three models captured that Day of initiation date had more noise transfers 
initiated during non-working days (Table 20). Although the Whole set model with 
its own parameters flagged more noise cases, the relative ratio within the noise 
group was lowest among the models. This may indicate a false positive problem, 
which would mean that the other two models may be better choices if a company 
has limited resources to verify wire transfers. Another distinctive finding was that 
the Friday phenomenon found in the Training set did not exist in the Test set. This 
might imply that the behavior of the claimants changed, or the company had to limit 
the number of Friday wire transfers due to a shortage of employees.  

    1 2 3 4 5 9 Total 

Test - 
Standalone 

Major 1,982 1,864 1,841 1,967 2,249 63 9,966  
19.89% 18.70% 18.47% 19.74% 22.57% 0.63% 100.00% 

Noise 4 6 5 3 9 7 34  
11.76% 17.65% 14.71% 8.82% 26.47% 20.59% 100.00% 

Total 1,986 1,870 1,846 1,970 2,258 70 10,000 
>10X      > 10X  

Whole set 

Major 1,966 1,830 1,819 1,929 2,208 39 9,791  
20.08% 18.69% 18.58% 19.70% 22.55% 0.40% 100.00% 

Noise 20 40 27 41 50 31 209  
9.57% 19.14% 12.92% 19.62% 23.92% 14.83% 100.00% 

Total 1,986 1,870 1,846 1,970 2,258 70 10,000 
>10X      > 10X  

Whole set - 
Train 

parameters 

Major 1,981 1,861 1,839 1,963 2,246 63 9,953  
19.90% 18.70% 18.48% 19.72% 22.57% 0.63% 100.00% 

Noise 5 9 7 7 12 7 47  
10.64% 19.15% 14.89% 14.89% 25.53% 14.89% 100.00% 

Total 1,986 1,870 1,846 1,970 2,258 70 10,000 
>10X      > 10X  

Table 20. Test set – frequency test: day of initiation date 

Second, comparisons by Day of effective date also showed that non-working days 
had significantly higher noise ratios than those of working days (1.49% vs. 26.47% 
in the Test-Standalone; 1.12% vs. 22.49% in the Whole set with its own parameters; 
and 1.42% vs. 34.04% in the Whole set with the Training set parameters) as shown 
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on Table 21. However, the Monday phenomenon in the Training set was not 
observed in the Test set. This might be the result of a behavior change of the 
claimants, or possibly from shortage of initiators. 

 

 
1 2 3 4 5 9 Total 

Test - 
Standalone 

Major 2,297 2,392 1,670 1,689 1,770 148 9,966  
23.05% 24.00% 16.76% 16.95% 17.76% 1.49% 100.00% 

Noise 6 6 5 3 5 9 34  
17.65% 17.65% 14.71% 8.82% 14.71% 26.47% 100.00% 

Total 2,303 2,398 1,675 1,692 1,775 157 10,000 
>10X      > 10X  

Whole set 

Major 2,254 2,368 1,655 1,655 1,749 110 9,791  
23.02% 24.19% 16.90% 16.90% 17.86% 1.12% 100.00% 

Noise 49 30 20 37 26 47 209  
23.44% 14.35% 9.57% 17.70% 12.44% 22.49% 100.00% 

Total 2,303 2,398 1,675 1,692 1,775 157 10,000 
>10X      > 10X  

Whole set - 
Train 

parameters 

Major 2,297 2,392 1,668 1,686 1,769 141 9,953  
23.08% 24.03% 16.76% 16.94% 17.77% 1.42% 100.00% 

Noise 6 6 7 6 6 16 47  
12.77% 12.77% 14.89% 12.77% 12.77% 34.04% 100.00% 

Total 2,303 2,398 1,675 1,692 1,775 157 10,000 
>10X      > 10X  

Table 21. Test set – frequency test: day of effective date 

Next, Table 22 and 22 show the comparisons of the third and fourth variables: 
Month of initiation date and Month of effective date. Similar to the Training set 
clustering result, all three models captured that the last two months at year-end had 
significantly higher noise ratios for both variables than other months. However, this 
distinction was less clear in the Whole set with its own parameters. The noise ratio 
in December was not significantly different from that of the major ratio (11.96% 
vs. 9.04%). The results for Month of effective date showed a similar result.  
  

 
1 2 3 4 5 6 7 8 9 10 11 12 Total 

Test - 
Standalone 

Major 886 626 956 926 720 911 994 667 822 882 674 902 9,966  
8.89% 6.28% 9.59% 9.29% 7.22% 9.14% 9.97% 6.69% 8.25% 8.85% 6.76% 9.05% 100.00% 

Noise 1 - 2 3 2 3 2 - 2 2 9 8 34  
2.94% 0.00% 5.88% 8.82% 5.88% 8.82% 5.88% 0.00% 5.88% 5.88% 26.47% 23.53% 100.00% 

Total 887 626 958 929 722 914 996 667 824 884 683 910 10,000 
>10X              
>2X           > 2X > 2X  

Whole set 

Major 872 608 939 920 708 906 984 660 801 871 637 885 9,791  
8.91% 6.21% 9.59% 9.40% 7.23% 9.25% 10.05% 6.74% 8.18% 8.90% 6.51% 9.04% 100.00% 

Noise 15 18 19 9 14 8 12 7 23 13 46 25 209  
7.18% 8.61% 9.09% 4.31% 6.70% 3.83% 5.74% 3.35% 11.00% 6.22% 22.01% 11.96% 100.00% 

Total 887 626 958 929 722 914 996 667 824 884 683 910 10,000 
>10X              
>2X           > 2X   
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Whole set - 
Train 

parameters 

Major 885 623 953 927 718 911 994 667 819 883 672 901 9,953  
8.89% 6.26% 9.58% 9.31% 7.21% 9.15% 9.99% 6.70% 8.23% 8.87% 6.75% 9.05% 100.00% 

Noise 2 3 5 2 4 3 2 - 5 1 11 9 47  
4.26% 6.38% 10.64% 4.26% 8.51% 6.38% 4.26% 0.00% 10.64% 2.13% 23.40% 19.15% 100.00% 

Total 887 626 958 929 722 914 996 667 824 884 683 910 10,000 
>10X              
>2X           > 2X > 2X  

Table 22. Test set – frequency test: month of initiation date 

    1 2 3 4 5 6 7 8 9 10 11 12 Total 

Test - 
Standalone 

Major 909 631 894 951 716 959 939 682 848 896 705 836 9,966  
9.12% 6.33% 8.97% 9.54% 7.18% 9.62% 9.42% 6.84% 8.51% 8.99% 7.07% 8.39% 100.00% 

Noise 1 - 2 3 2 3 2 - 2 1 10 8 34  
2.94% 0.00% 5.88% 8.82% 5.88% 8.82% 5.88% 0.00% 5.88% 2.94% 29.41% 23.53% 100.00% 

Total 910 631 896 954 718 962 941 682 850 897 715 844 10,000 
>10X              
>2X           > 2X > 2X  

Whole set 

Major 895 613 876 946 704 953 930 674 827 885 673 815 9,791  
9.14% 6.26% 8.95% 9.66% 7.19% 9.73% 9.50% 6.88% 8.45% 9.04% 6.87% 8.32% 100.00% 

Noise 15 18 20 8 14 9 11 8 23 12 42 29 209  
7.18% 8.61% 9.57% 3.83% 6.70% 4.31% 5.26% 3.83% 11.00% 5.74% 20.10% 13.88% 100.00% 

Total 910 631 896 954 718 962 941 682 850 897 715 844 10,000 
>10X              
>2X           > 2X   

Whole set - 
Train 

parameters 

Major 908 628 891 952 714 959 939 682 845 897 703 835 9,953  
9.12% 6.31% 8.95% 9.56% 7.17% 9.64% 9.43% 6.85% 8.49% 9.01% 7.06% 8.39% 100.00% 

Noise 2 3 5 2 4 3 2 - 5 - 12 9 47  
4.26% 6.38% 10.64% 4.26% 8.51% 6.38% 4.26% 0.00% 10.64% 0.00% 25.53% 19.15% 100.00% 

Total 910 631 896 954 718 962 941 682 850 897 715 844 10,000 
>10X              
>2X           > 2X > 2X  

Table 23. Test set – frequency test: month of effective date 

The result of the fifth variable, Payee ID, reconfirmed that the DBSCAN could 
pinpoint particular payees that were associated with noise wire transfers. This 
information could facilitate monitoring or detecting potential fraud or errors. As 
shown in Table 24, most of the noise wire transfers were related specific payees, 
many of whom were new payees. Caution must be taken when interpreting these 
results. The payee 20357 had no noise wire transfers in the models of Test-
Standalone and Whole set with the Training set parameters. However, all of the 15 
wire transfers sent to the payee were classified as noises by the model with the 
whole set.  

  
 

1715 1924 2425 … 20357 20718 20981 … 30429 30430 30434 30435 Total 

Test - 
Standalone 

Major 0 0 0 … 15 4 3 … 19 171 10 21 9,966  
0.00% 0.00% 0.00% … 0.15% 0.04% 0.03% … 0.19% 1.72% 0.10% 0.21% 100.00% 

Noise 1 1 1 … 0 0 0 … 0 0 0 1 34  
2.94% 2.94% 2.94% … 0.00% 0.00% 0.00% … 0.00% 0.00% 0.00% 2.94% 100.00% 

Total 1 1 1 … 15 4 3 … 19 171 10 22 10,000 
>10X > 10X > 10X > 10X …    …    > 10X  
New New New New …    …      

Whole set 

Major 0 0 0 … 0 3 2 … 19 170 10 21 9,791  
0.00% 0.00% 0.00% … 0.00% 0.03% 0.02% … 0.19% 1.74% 0.10% 0.21% 100.00% 

Noise 1 1 1 … 15 1 1 … 0 1 0 1 209  
0.48% 0.48% 0.48% … 7.18% 0.48% 0.48% … 0.00% 0.48% 0.00% 0.48% 100.00% 

Total 1 1 1 … 15 4 3 … 19 171 10 22 10,000 
>10X > 10X > 10X > 10X … > 10X > 10X > 10X …      
New New New New … New   …      
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Whole set - 
Train 

parameters 

Major 0 0 0 … 15 4 3 … 19 171 10 21 9,953  
0.00% 0.00% 0.00% … 0.15% 0.04% 0.03% … 0.19% 1.72% 0.10% 0.21% 100.00% 

Noise 1 1 1 … 0 0 0 … 0 0 0 1 47  
2.13% 2.13% 2.13% … 0.00% 0.00% 0.00% … 0.00% 0.00% 0.00% 2.13% 100.00% 

Total 1 1 1 … 15 4 3 … 19 171 10 22 10,000 
>10X > 10X > 10X > 10X …    …    > 10X  
New New New New …    …      

Table 24. Test set – frequency test: Payee ID 

b.2. Variables with insignificant differences 

As mentioned, some variables in the DBSCAN model did not present meaningful 
differences between the major and the noise groups. As with the Training set, the 
clustered and noise wire transfers had no clear behavioral differences in Day of 
month of initiation date and Date of month of effective date.  

Variables excluded from the model 

As performed in the Training set model, this section illustrates that all three models 
captured differences in characteristics of variables not included in the models. 
Analyses of four variables not in the models showed meaningful implications that 
could be used for anomaly monitoring and detection.  

a. Descriptive Statistics 

Consistent with the Training set model, differences in Initiator’s Authorization limit 
and Approver’s Authorization limit were not significant due to extremely high, 
consistent authorization limits. The high authorization limits might have been set 
for a practical reason; it would be inconvenient to ask a senior whenever there was 
a wire transfer that exceeded their authorization limits. Instead, they might initiate 
the wire transfer because the approvers would further review it.  

b. Frequency Tests 

Analysis of the remaining four variables that were not used for the clustering 
models showed that there were strong associations between noise/cluster status and 
each variable. Comparisons of Initiator ID in Table 25 showed presence of specific 
initiators that tended to post noise wire transfers. As expected, the Test-Standalone 
and the Whole set with the Train parameters flagged a similar set of initiators while 
the Whole set showed different results. For example, two wire transfers from 
initiator 645860 were flagged by all three models, but one noisy transfer from 
initiator 645640 was detected only by the Whole set with its own parameters (Table 
25).  

Initiator LOB analyses uncovered that specific Initiator LOBs were related to noise 
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wire transfers. Although this finding showed a significant association between the 
initiator LOB and the noise wire transfers, its usefulness was highly limited because 
the majority of the wire transfers of the Test set were initiated by a single LOB, 
10023761. As shown in Table 26, it initiated 91.46% of the total wire transfers in 
the Test set and the majority of noise wire transfers were also associated with it. 
This observation, however, does not mean that the relationship between the LOB 
and the noise wire transfers is not meaningful. Some LOBs had greater propensity 
for noise than others, which could be used at the initial stage of anomaly detection.  
  

 
374590 375727 531541 645640 645860 … 714368 718031 934834 … 5074149 JM Total 

Test - 
Standalone 

Major 2 1 5 2 2 … 2 6 13 … 31 1 9,966  
0.02% 0.01% 0.05% 0.02% 0.02% … 0.02% 0.06% 0.13% … 0.31% 0.01% 100.00% 

Noise 0 0 0 0 2 … 0 0 3 … 0 0 34  
0.00% 0.00% 0.00% 0.00% 5.88% … 0.00% 0.00% 8.82% … 0.00% 0.00% 100.00% 

Total 2 1 5 2 4 … 2 6 16 … 31 1 10,000 
>10X     > 10X …   > 10X …    
New      …    …    

Whole set 

Major 2 1 5 1 2 … 0 6 13 … 31 1 9791  
0.02% 0.01% 0.05% 0.01% 0.02% … 0.00% 0.06% 0.13% … 0.32% 0.01% 100.00% 

Noise 0 0 0 1 2 … 2 0 3 … 0 0 209  
0.00% 0.00% 0.00% 0.48% 0.96% … 0.96% 0.00% 1.44% … 0.00% 0.00% 100.00% 

Total 2 1 5 2 4 … 2 6 16 … 31 1 10,000 
>10X    > 10X > 10X … > 10X  > 10X …    
New      … New   …    

Whole set - 
Train 

parameters 

Major 2 1 5 2 2 … 2 6 13 … 31 1 9953  
0.02% 0.01% 0.05% 0.02% 0.02% … 0.02% 0.06% 0.13% … 0.31% 0.01% 100.00% 

Noise 0 0 0 0 2 … 0 0 3 … 0 0 47  
0.00% 0.00% 0.00% 0.00% 4.26% … 0.00% 0.00% 6.38% … 0.00% 0.00% 100.00% 

Total 2 1 5 2 4 … 2 6 16 … 31 1 10,000 
>10X     > 10X …   > 10X …    
New      …    …    

Table 25. Test set – frequency test: Initiator ID 
  10021241 10023527 10023755 10023756 10023761 10023762 10025652 10025815 10031040 10049070 10084210 5025814 5025815 85025814 85025815 Total 

Test - 
Standalone 

Major 155 57 3 3 9,127 384 41 22 5 9 13 111 11 24 1 9,966 
 1.56% 0.57% 0.03% 0.03% 91.58% 3.85% 0.41% 0.22% 0.05% 0.09% 0.13% 1.11% 0.11% 0.24% 0.01% 100.00% 

Noise 3 0 0 0 19 3 1 0 0 2 0 4 0 2 0 34 
 8.82% 0.00% 0.00% 0.00% 55.88% 8.82% 2.94% 0.00% 0.00% 5.88% 0.00% 11.76% 0.00% 5.88% 0.00% 100.00% 

Total 158 57 3 3 9,146 387 42 22 5 11 13 115 11 26 1 10,000 

>10X          > 10X  > 10X  > 10X   

New                 

Whole set 

Major 155 46 3 2 8989 382 30 20 5 6 13 106 11 22 1 9791 
 1.58% 0.47% 0.03% 0.02% 91.81% 3.90% 0.31% 0.20% 0.05% 0.06% 0.13% 1.08% 0.11% 0.22% 0.01% 100.00% 

Noise 3 11 0 1 157 5 12 2 0 5 0 9 0 4 0 209 
 1.44% 5.26% 0.00% 0.48% 75.12% 2.39% 5.74% 0.96% 0.00% 2.39% 0.00% 4.31% 0.00% 1.91% 0.00% 100.00% 

Total 158 57 3 3 9,146 387 42 22 5 11 13 115 11 26 1 10,000 

>10X  > 10X  > 10X   > 10X   > 10X       

New                 

Whole set - 
Train 

parameters 

Major 155 57 3 3 9113 386 41 22 5 9 13 111 11 23 1 9953 
 1.56% 0.57% 0.03% 0.03% 91.56% 3.88% 0.41% 0.22% 0.05% 0.09% 0.13% 1.12% 0.11% 0.23% 0.01% 100.00% 

Noise 3 0 0 0 33 1 1 0 0 2 0 4 0 3 0 47 
 6.38% 0.00% 0.00% 0.00% 70.21% 2.13% 2.13% 0.00% 0.00% 4.26% 0.00% 8.51% 0.00% 6.38% 0.00% 100.00% 

Total 158 57 3 3 9,146 387 42 22 5 11 13 115 11 26 1 10,000 

>10X          > 10X    > 10X   

New                 

Table 26. Test Set – Frequency Test: Initiator LOB 

The last two variables in comparison were Approver ID (Table 27) and Approver 
LOB (Table 28). As observed in the Training set model, the three models showed 
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that specific approvers and approver LOBs were more prone to making noise wire 
transfers than others. The three models also identified the association between 
specific Approver LOBs and noise wire transfers. Similar to Initiator LOB, 
however, noise was concentrated on specific LOBs. For example, LOBs 10023759 
and 10023761 accounted for 89.26% of the total wire transfers and 67.65% of the 
noise wire transfers so that caution must be taken in using the association between 
the noise wire transfers and Approver LOBs for monitoring and detecting 
anomalies.  

		 		 375727	 382749	 …	 714368	 815326	 822867	 936205	 940579	 963247	 …	 1025214	 1025306	 1026338	 1036956	 Total	

Test	-	
Standalone	

Major	 7	 119	 …	 2	 43	 15	 8	 4	 89	 …	 7	 41	 2	 28	 9,966	

		 0.07%	 1.19%	 …	 0.02%	 0.43%	 0.15%	 0.08%	 0.04%	 0.89%	 …	 0.07%	 0.41%	 0.02%	 0.28%	 100.00%	

Noise	 1	 0	 …	 0	 3	 0	 0	 0	 6	 …	 0	 1	 0	 0	 34	

		 2.94%	 0.00%	 …	 0.00%	 8.82%	 0.00%	 0.00%	 0.00%	 17.65%	 …	 0.00%	 2.94%	 0.00%	 0.00%	 100.00%	

Total	 8	 119	 …	 2	 46	 15	 8	 4	 95	 …	 7	 42	 2	 28	 10,000	

>10X	 >	10X	 	 …	 	 >	10X	 	 	 	 >	10X	 …	 	 	 	 	 	

New	 	 	 …	 	 	 	 	 	 	 …	 	 	 	 	 	

Whole	set	

Major	 5	 119	 …	 1	 43	 14	 2	 4	 74	 …	 6	 30	 2	 28	 9,791	

		 0.05%	 1.22%	 …	 0.01%	 0.44%	 0.14%	 0.02%	 0.04%	 0.76%	 …	 0.06%	 0.31%	 0.02%	 0.29%	 100.00%	

Noise	 3	 0	 …	 1	 3	 1	 6	 0	 21	 …	 1	 12	 0	 0	 209	

		 1.44%	 0.00%	 …	 0.48%	 1.44%	 0.48%	 2.87%	 0.00%	 10.05%	 …	 0.48%	 5.74%	 0.00%	 0.00%	 100.00%	

Total	 8	 119	 …	 2	 46	 15	 8	 4	 95	 …	 7	 42	 2	 28	 10,000	

>10X	 >	10X	 	 …	 >	10X	 	 	 >	10X	 	 >	10X	 …	 	 >	10X	 	 	 	

New	 	 	 …	 	 	 	 	 	 	 …	 	 	 	 	 	

Whole	set	-	
Train	

parameters	

Major	 7	 119	 …	 2	 43	 15	 8	 4	 87	 …	 7	 41	 2	 28	 9,953	

		 0.07%	 1.20%	 …	 0.02%	 0.43%	 0.15%	 0.08%	 0.04%	 0.87%	 …	 0.07%	 0.41%	 0.02%	 0.28%	 100.00%	

Noise	 1	 0	 …	 0	 3	 0	 0	 0	 8	 …	 0	 1	 0	 0	 47	

		 2.13%	 0.00%	 …	 0.00%	 6.38%	 0.00%	 0.00%	 0.00%	 17.02%	 …	 0.00%	 2.13%	 0.00%	 0.00%	 100.00%	

Total	 8	 119	 …	 2	 46	 15	 8	 4	 95	 …	 7	 42	 2	 28	 10,000	

>10X	 >	10X	 	 …	 	 >	10X	 	 	 	 >	10X	 …	 	 	 	 	 	

New	 	 	 …	 	 	 	 	 	 	 …	 	 	 	 	 	

Table 27. Test set – frequency test: Approver ID 

  10021241 10021854 10023437 10023527 10023755 10023756 10023759 10023761 10023762 10024524 10025652 10031040 10049070 10084110 10084170 10086250 Total 

Test - 
Standalone 

Major 1 43 1 56 30 11 1,035 7,868 732 4 41 5 15 119 4 1 9,966 

 0.01% 0.43% 0.01% 0.56% 0.30% 0.11% 10.39% 78.95% 7.34% 0.04% 0.41% 0.05% 0.15% 1.19% 0.04% 0.01% 100.00% 

Noise 0 3 0 0 0 0 12 11 4 0 1 0 3 0 0 0 34 

 0.00% 8.82% 0.00% 0.00% 0.00% 0.00% 35.29% 32.35% 11.76% 0.00% 2.94% 0.00% 8.82% 0.00% 0.00% 0.00% 100.00% 

Total 1 46 1 56 30 11 1,047 7,879 736 4 42 5 18 119 4 1 10,000 

>10X  > 10X           > 10X     
New                  

Whole set 

Major 1 43 1 45 28 10 952 7808 728 4 30 5 12 119 4 1 9,791 

 0.01% 0.44% 0.01% 0.46% 0.29% 0.10% 9.72% 79.75% 7.44% 0.04% 0.31% 0.05% 0.12% 1.22% 0.04% 0.01% 100.00% 

Noise 0 3 0 11 2 1 95 71 8 0 12 0 6 0 0 0 209 

 0.00% 1.44% 0.00% 5.26% 0.96% 0.48% 45.45% 33.97% 3.83% 0.00% 5.74% 0.00% 2.87% 0.00% 0.00% 0.00% 100.00% 

Total 1 46 1 56 30 11 1,047 7,879 736 4 42 5 18 119 4 1 10,000 

>10X    > 10X       > 10X  > 10X     
New                  

Whole set - 
Train 

parameters 

Major 1 43 1 56 30 11 1022 7866 734 4 41 5 15 119 4 1 9,953 

 0.01% 0.43% 0.01% 0.56% 0.30% 0.11% 10.27% 79.03% 7.37% 0.04% 0.41% 0.05% 0.15% 1.20% 0.04% 0.01% 100.00% 

Noise 0 3 0 0 0 0 25 13 2 0 1 0 3 0 0 0 47 

 0.00% 6.38% 0.00% 0.00% 0.00% 0.00% 53.19% 27.66% 4.26% 0.00% 2.13% 0.00% 6.38% 0.00% 0.00% 0.00% 100.00% 

Total 1 46 1 56 30 11 1,047 7,879 736 4 42 5 18 119 4 1 10,000 

>10X  > 10X           > 10X     
New                  

Table 28. Test set – frequency test: Approver LOB 

To summarize, all three models identified the significant characteristics of each 
variable both included and excluded with different degrees of efficiency. The model 
with the Whole set with its own parameters flagged significantly more noise wire 
transfers. However, this might imply that the model generated more false positives. 
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Considering the limited resources that a company can allocate to monitoring and 
detecting anomalies, this model may not be the best choice for practitioners. 
However, it may be most suitable if more thorough investigation is needed for fraud 
detection. Since the other two models uncover similar patterns of the variables in 
this study, applying the DBSCAN model directly to the Test set may be the better 
option. 

4. CONCLUSION AND LIMITATIONS  

This study introduced practitioner-friendly clustering DBSCAN analyses that 
monitor and detect anomalies in their transactional data. The proposed anomaly 
detection models demonstrated their capability to uncover hidden anomalous 
relationships in the transactions without prior knowledge about the data being used. 
DBSCAN analyses that had minimal requirements of domain knowledge to 
determine the input parameters could be advantageous for practitioners who often 
lack in-depth knowledge about their company's fraudulent transactions and their 
behavioral patterns (Ester et al., 1996). The subsequent analyses of the Train and 
Test sets also affirmed the reliability and consistency of DBSCAN as an anomaly 
detection method. 

This study, however, has several limitations. First, the DBSCAN parameters used 
for the models might not be optimal. Determination of clustering parameters in 
applying other clustering methods requires prior knowledge about the anomalies in 
the dataset clustering method algorithm. However, this often serves as a barrier for 
practitioners attempting to develop fraud and error monitoring methods. The 
DBSCAN parameter selection process requires minimal human intervention, 
making it more approachable for practitioners in anomaly detection and monitoring. 
However, there could be a tradeoff between easy application and accuracy. The 
parameter selection methods used in future studies may utilize more sophisticated 
criteria. For example, instead of integer values for the eps, other rational numbers, 
such as 2.5, may be used to select the knee in a kNNDist plot.  

Another limitation of this study was caused by the limited computational power of 
the computer used to execute the DBSCAN code. Due to the limited computational 
power, this study used only 20,000 wire transfers with 12 starting variables (cut to 
9 principal components via PCA). Although the resulting principal components 
accounted for the majority of the variance (e.g., 97.91% in the Training set model), 
it was obvious that the dimensionality reduction led to a loss of variance of the 



88   The International Journal of Digital Accounting Research                                                                  Vol. 24 

variables in the models. The DBSCAN models would have produced better results 
if raw data without conversion had been used. A future study could make use of a 
computer equipped with the enhanced computational capabilities for DBSCAN 
modeling to overcome this limitation.  

Lastly, the modeling in this study assumed that fraud detection activities took place 
at regular intervals of a fixed number of transactions. In practice, however, a fraud 
detection model might be activated at preset time periods like monthly or quarterly 
intervals. This alteration could yield different outcomes, revealing additional 
relationships that remained undiscovered in this study. A future study could also 
consider potential seasonality that might influence the transaction volumes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Kim and Vasarhelyi      __                                                                       Anomaly detection with DBSCAN…89 
6.  REFERENCES 

ACFE (Association of Certified Fraud Examiners). (2022). Occupational Fraud 
2022: A Report to the Nations. ACFE. https://legacy.acfe.com/report-to-the-
nations/2022/ Accessed 21 April 2024. 

Bolton, R. J., & Hand, D.J. (2001). Unsupervised profiling methods for fraud 
detection. Credit Scoring and Credit Control. VII, 235-255. 
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5b640c367ae9
cc4bd072006b05a3ed7c2d5f496d. Accessed 21 April 2024. 

Bolton, R. J., & Hand, D.J. (2002). Statistical Fraud Detection: A Review. 
Statistical Science. 17(3), 235-249. https://doi.org/10.1214/ss/1042727940. 

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. 
ACM Computing Surveys, 41, 1-58. https://doi.org/10.1145/1541880.1541882. 

Ester, M., Kriegel, H., Sander, J., & Xu, X. A. (1996). Density-Based Algorithm 
for Discovering Clusters in Large Spatial Databases with Noise. KDD, 96, 226-231. 
https://dl.acm.org/doi/10.5555/3001460.3001507. 

Freiman, J. W., Kim, Y., & Vasarhelyi, M.A. (2022). Full population testing: 
Applying multidimensional audit data sampling (MADS) to general ledger data 
auditing. International Journal of Accounting Information Systems, 46. 
https://doi.org/10.1016/j.accinf.2022.100573 

Hasan, B.M.S, & Abdulazeez A.M. (2021). A Review of Principal Component 
Analysis Algorithm for Dimensionality Reduction. Journal of Soft Computing and 
Data Mining, 2, 20-30. https://doi.org/10.30880/jscdm.2021.02.01.003 

Jolliffe, I.T., & Jorge, C. (2016). Principal component analysis: a review and recent 
developments. Philosophical Transactions of the Royal Society A: Mathematical, 
Physical and Engineering Sciences, 374(2065), 20150202 https://doi.org/10. 
1098/rsta.2015.0202. 

Khan, K., Rehman, S.U., Aziz, K., Fong, & Sarasvady, S. (2014). DBSCAN: Past, 
Present, and Future. The Fifth International Conference on the Application of 
Digital Information and Web Technologies, 232-238  https://doi.org/10.1109/ 
icadiwt.2014.6814687. 

 



90   The International Journal of Digital Accounting Research                                                                  Vol. 24 

Kim, Y, & Kogan, A. (2014). Development of an Anomaly Detection Model for a 
Bank’s Transitory Account System. Journal of Information Systems, 28, 145-165. 
https://doi.org/10.2308/isys-50699. 

Kim, Y., & Vasarhelyi, M.A. (2012). A Model to Detect Potentially 
Fraudulent/Abnormal Wires of an Insurance Company: An Unsupervised Rule-
Based Approach. Journal of Emerging Technologies in Accounting, 9, 95-110. 
https://doi.org/10.2308/jeta-50411. 

Kogan, A., Sudit, E.F., & Vasarhelyi, M.A. (1999). Continuous online auditing: A 
program of research. Journal of Information Systems, 13, 87–103. 
https://doi.org/10.2308/jis.1999.13.2.87. 

Kou, Y., Lu., C., Sirwongwattana, S., & Huang, Y. (2004). Survey of Fraud 
Detection Techniques. IEEE International Conference on Networking, Sensing and 
Control, 2, 749-754.  https://doi.org/10.1109/ICNSC.2004.1297040. 

Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). A Comprehensive Survey of 
Data Mining Based Fraud Detection Research. arXiv preprint arXiv:1009.6119. 
https://doi.org/10.48550/arXiv.1009.6119. 

Liu, Q., & Vasarhelyi, M.A. (2013). Healthcare Fraud Detection: A Survey and a 
Clustering Model Incorporating Geo-Location Information. 29th World Continuous 
Auditing and Reporting Symposium. Brisbane, Australia. 
http://raw.rutgers.edu/docs/wcars/29wcars/Health%20care%20fraud%20detection
%20A%20survey%20and%20a%20clustering%20model%20incorporating%20Ge
o-location%20information.pdf Accessed 21 April 2024. 

Major, J. A., & Riedinger, D.R. (2002). EFD: A hybrid knowledge/statistical-based 
system for the detection of fraud. The Journal of Risk and Insurance, 69, 309–324. 
https://doi.org/10.1111/1539-6975.00025. 

Murthy, U.S. (2004). An analysis of the effects of continuous monitoring controls 
on e-commerce system performance. Journal of Information Systems, 18, 29–47. 
https://doi.org/10.2308/jis.2004.18.2.29. 

Murthy, U.S., & Groomer, M.S. (2004). A continuous auditing web services model 
for XML-based accounting systems. International Journal of Accounting 
Information Systems, 5, 139–163. https://doi.org/10.1016/j.accinf.2004.01.007. 

 



Kim and Vasarhelyi      __                                                                       Anomaly detection with DBSCAN…91 
Rezaee, Z., Sharbatoghlie, A., Elam, R., & McMickle, P.L. (2002). Continuous 
auditing: Building automated auditing capability. Auditing: A Journal of Practice 
& Theory, 21, 147–163. https://doi.org/10.2308/aud.2002.21.1.147. 

Sabau, A.S. (2012). Survey of Clustering Based Financial Fraud Detection 
Research. Informatica Economica. http://revistaie.ase.ro/content/61/10%20-
%20sabau.pdf Accessed 21 April 2024. 

Sheridan, K., Puranik, T.G., Mangortey, E., Pinon-Fischer, O.J., Kirby, M., & 
Mavris, D.N. (2020). An application of DBSCAN clustering for flight anomaly 
detection during the approach phase. AIAA Scitech 2020 Forum, 1851. 
https://doi.org/10.2514/6.2020-1851. 

Tatusch, M., Klassen, G., Bravidor, M., & Conrad, S. (2020). Predicting Erroneous 
Financial Statements Using a Density-Based Clustering Approach. The 4th 
International Conference on Business and Information Management, 89-94 
https://doi.org/10.1145/3418653.3418673.  

Thiprungsri, S., & Vasarhelyi, M.A. (2011). Cluster Analysis for Anomaly 
Detection in Accounting Data: An Audit Approach. The International Journal of 
Digital Accounting Research, 11, 69 – 84. https://doi.org/10.4192/1577-8517-
v11_4. 

Vasarhelyi, M.A., & Halper, F.B. (1991). The continuous audit of online systems. 
Auditing: A Journal of Practice & Theory, 19, 110–125. 
https://www.researchgate.net/publication/255667612_The_Continuous_Audit_of_
Online_Systems Accessed 21 April 21, 2024. 

Woodroof, J., & Searcy, D. (2001). Continuous audit implications of Internet 
technology: Triggering agents over the web in the domain of debt covenant 
compliance. The 34th Hawaii International Conference on System Sciences, 8-pp. 
https://doi.org/10.1109/hicss.2001.927080. 

 

  
 

 


